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An algorithm is formulated for computing perturbation-series solutions for standing 
waves on the interface between two semi-infinite fluids of different but uniform 
densities. Using a comppter, the series solutions are computed to fifth order for a 
general value of r ,  the ratio of the density of the upper fluid to that of the lower fluid 
(0 < r < l), and to 21st order for five specific values of this ratio: r = 0, lop3, 0.1, 
05, 1.0. The series for the period, the energy, and the interface profile of the waves 
are summed using Pad6 approximants. The maximum wave height for each of the 
above five density ratios is estimated from the locations of the poles of the Pad6 
approximants for the wave period and the wave energy. At maximum height the 
interface appears to be vertical a t  a point on the interface that is very near the crest 
for r = and approaches the midpoint between the crest and the trough as r 
approaches 1.0. 

1. Introduction 
Two-dimensional standing waves a t  a fluid interface are fluid motions, bounded 

by an interface between two fluids of different but uniform densities, that  are periodic 
in both space and time and are symmetric about some plane that is perpendicular 
to the undisturbed interface. Because standing waves cannot be reduced to  steady 
motion by a change of coordinate system, the mathematical determination of 
standing waves is a more difficult problem than that of progressive waves of 
permanent form. There is no mathematical proof of the existence of standing waves 
that satisfy the exact boundary conditions, but several approximate small-amplitude 
solutions have been determined. 

Most of the previous work is concerned with free-surface standing waves, a special 
case of interfacial standing waves in which the density of the upper fluid is zero. 
Rayleigh (1915) was the first to investigate the nonlinear behaviour of free-surface 
standing waves. He developed perturbation-expansion procedures, valid for small 
amplitudes, and computed the expansions to third order in the expansion parameter 
for the case of a fluid of infinite depth. Much later, Penney & Price (1952), essentially 
using Rayleigh’s method, computed the expansion to fifth order. Using a different 
expansion procedure, Tadjbaksh & Keller (1960) computed expansions to third order 
for the case of finite depth. Using a Lagrangian coordinate system instead of the 
Eulerian coordinates of the previously mentioned investigations, Sekerzh-Zenkovich 
(1947, 1951) and Chabert D’Hieres (1960) developed alternative perturbation- 
expansion procedures and computed expansions to third order for both infinite and 
finite depth. More recently, Schwartz & Whitney (1977, 1981), using the conformal- 
mapping methods described by Whitney (1971), formulated a simpler perturbation- 
expansion procedure, which they used to  compute a 25th-order expansion with the 
aid of a computer for a fluid of infinite depth. 
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For comparison with interfacial waves, we describe here some properties of 
nonlinear free-surface standing waves. The calculations discussed above show that 
the maximum elevation of the free surface from its mean level exceeds the maximum 
depression. Also, the period of the waves increases with increasing amplitude for 
depth-to-wavelength ratios greater than 0.1 7, and decreases with increasing amplitude 
for depth-to-wavelength ratios less than 0.17. This behaviour has been verified 
experimentally by Fultz (1962). The fifth-order calculations of Penney & Price show 
that the free surface is never flat. 

Penney & Price (1952) proposed that the free-surface standing wave of maximum 
amplitude, when a t  its maximum height, has a downward acceleration a t  the crest 
equal to g. Their proposal is based on the assertion, established rigorously by 
Schwartz & Whitney (1981), that  the downward acceleration of the crest cannot 
exceed g. Using this criterion, Penney & Price estimated that the maximum 
wave-height-to-wavelength ratio is 0.218. With the further assumption that the 
pressure may be expanded in a Taylor series about the crest, they concluded that 
the wave of maximum amplitude would crest in a corner with an enclosed angle of 
90'. The experiments of Taylor (1953) and Edge & Walters (1964) show that the wave 
of maximum amplitude has a nearly 90' corner a t  the crest, but the wave height (only 
measured by Taylor) is about 10 % greater than predicted by Penney & Price. Taylor 
(1953) disputed Penney & Price's argument for the 90' crest angle because the 
argument is independent of the mode of formation of the crest. The high-order 
perturbation expansion of Schwartz & Whitney (1981) also suggests, but not 
conclusively, that  the wave of maximum amplitude has a 90' corner at the crest, and 
predicts that the maximum wave-height-to-wavelength ratio is between 0.204 and 
0.213. Schwartz & Whitney (1981) also find the argument for the 90' crest corner 
unconvincing because the pressure may not be a regular function in the neighbourhood 
of a sharp crest. Saffman & Yuen (1979), having recently completed some time- 
dependent numerical calculations of standing waves, claim that their results do not 
support the argument for a 90' crest corner. 

Interfacial standing waves, which are of interest in many physical situations, have 
received less attention. For fluids of infinite depth Hunt (1961), using basically 
Penney & Price's method, computed a fourth-order perturbation expansion, and 
Sekerzh-Zenkovich (1961), using an appropriately modified version of his earlier 
free-surface Lagrangian formulation, computed a third-order expansion. Thorpe 
(1968) extended Hunt's analysis to include the effects of finite fluid depth. These 
calculations show that the presence of the upper fluid reduces the influence of higher 
harmonics in the solution, making the interface profile more sinusoidal in shape than 
a free-surface profile of equivalent amplitude. Also, the presence of the upper fluid 
increases the period of the oscillations. For ratios of the density of the upper fluid 
to that of the lower fluid between 0.97 and 1.0, Thorpe (1968) has checked 
experimentally some of the theoretical predictions of the properties of interfacial 
standing waves. He found good agreement between theory and experiment for the 
shape of the interface and the period of the waves a t  small wave amplitudes. 

I n  none of the previously mentioned theoretical work is the shape or amplitude 
of the highest interfacial standing wave estimated. Thorpe ( 1968) observed experi- 
mentally, for the density ratios mentioned above, that interfacial standing waves 
become unstable a t  a wave-height-to-wavelength ratio of about 0.13. The instability 
begins as a single vortex at the node of the waves, and there8,fter the motion quickly 
becomes three-dimensional. Thorpe suggests that  the observed instability is a shear 
instability. 
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I n  the present work we formulate an algorithm for computing high-order 
perturbation-series solutions for interfacial standing waves. We compute the series 
to fifth order for a general value of r ,  the ratio of the density of the upper fluid to 
that in the lower fluid, and to  21st order for five specific values of this ratio, r = 0-0, 
lop3, 0.1, 0.5, 1.0. We use Pade approximants to sum the series for the wave period, 
the wave energy, and the wave profile. The positions of the poles of the Pad6 
approximants for the wave period and wave energy are used to estimate the 
amplitude of the highest wave for the five density ratios given above, although we 
do not have a sufficient number of terms to give conclusive answers. Our results 
suggest, in agreement with Schwartz & Whitney (1981), that the highest free-surface 
standing wave has a wave-height-to-wavelength ratio of about 021,  which occurs 
when the fluid acceleration at the crest equals g and the enclosed angle a t  the crest 
is 90*. For Boussinesq ( r  = 1) waves, our results indicate that the maximum 
wave-height-to-wavelength ratio is about 0.35. Inspection of Boussinesq wave 
profiles leads us to conclude that the wave of maximum amplitude has a vertical slope 
a t  its node. We can detect no significant difference between free-surface ( r  = 0) and 
air-water ( r  = waves. We find that r = 0.1 waves have a maximum amplitude 
much larger than Boussinesq waves, and r = 0.5 waves have a maximum amplitude 
between those of free-surface and Boussinesq waves. We conclude from our computed 
wave profiles that the wave of maximum height, for given r > 0, has a vertical slope 
a t  some point along the interface, and that this point moves from very near the crest 
to midway between the crest and the trough as the density ratio increases from very 
near zero to  one. 

The mathematical formulation of the problem is discussed in $2. A perturbation- 
expansion procedure, similar to that used by Hunt (1961), and a solution algorithm 
are described in $3 .  The results are presented and discussed in $4, and some 
concluding remarks are offered in $5.  

2. Formulation of the problem 
We consider the motion under the influence of gravity of symmetric two-dimensional 

standing waves on the interface between two homogeneous semi-infinite fluids of 
different densities. Both fluids are assumed to be inviscid and incompressible, and 
the motion in either fluid is assumed to be irrotational. 

I n  a reference frame in which the fluid at infinity is a t  rest, we define a rectangular 
coordinate system such that the x-axis is directed parallel to the undisturbed interface 
and the y-axis is directed perpendicular to the undisturbed interface and opposite 
to the direction of gravity. We describe the interface profile by the relation y = r(t, x), 
where t represents time, and position the coordinate system such that the value of 
7 averaged over one wavelength of the motion a t  any fixed time is zero. All quantities 
associated with the lower fluid will be denoted by a subscript 1 and all quantities 
associated with the upper fluid will be denoted by a subscript 2. A schematic diagram 
of one wavelength of the motion is shown in figure 1 .  

Because both fluids are incompressible and the motion in each fluid is irrotational, 
we can define the velocity potentials and $2 such that 

u2 = - ax ax ’ 
@l 

u1 = - (2.1 a ,  b )  

( 2 . 2 ~ .  b )  

10-2 
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VZ$hl = 0, VZqi5, = 0, (2 .3a ,  6 )  

in which u is the horizontal component and v the vertical component of the fluid 
velocity. The problem is to determine the shape y = y ( t ,  x) of the interface profile a t  
all times, the two functions qil and that satisfy (2 .3) ,  and the period T of the motion, 
such that for specified wave amplitude the motion is periodic in space, with specified 
wavelength A, periodic in time, and such that the following boundary conditions are 

( 2 . 4 ~ )  
satisfied : # 1 + 0  as y+--co, 

& + O  as y++co, (2 .4b)  

87 a41ar 
at ax ax ay 

a? a h a r  842 
at ax ax ay 

-+--- = ~ on y = y ( t ,  x), 

-+-- = - on y = y ( t , x ) ,  

( 2 . 5 a )  

(2 .5b)  

- 0  a t  x = O ,  W I  - a h  
ax ax 

where p represents the pressure. The boundary condition (2 .4)  requires the motion 
to vanish far from the interface, (2 .5)  states that the normal component of the fluid 
velocity on the interface must equal the normal component of the interface velocity, 
(2.6) asserts that the pressure must be continuous across the interface, and (2.7) fixes 
the phase of the waves, making x = 0 a plane of symmetry. We define the wave 
amplitude H as the vertical distance from the crest to the trough a t  t = 0. 

The pressure may be eliminated from the problem by use of Bernoulli's equation, 
which relates the pressure to the velocity potential by 
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where p is the density, g is the acceleration due to gravity, and Bl(t) and B,(t) are 
functions o f t  only. Subtracting (2.9) from (2.8), we write (2.6) as 

--'-r-+g(v41)~-r~(v$,)2+(1-r)gy a h  = B(t),  
at at 

(2.10) 

where B(t) = B,(t) - rB,(t), (9.11) 

(2.12) 

We may obtain an expression for B(t) in (2.10) in terms of the dependent variables 
of the problem. Defining the modified pressure P a s  the deviation of the pressure from 
its hydrostatic value, we infer from (2.8) and (2.9) that  far from the interface 

--+B1(t) < as y-t-03, 

P1 

p2 - -+ B,(t) as y -t + co 
PZ 

(2.13) 

(2.14) 

Thus B,(t) and B,(t) are proportional to the component of the pressure in each of the 
two fluids that is spatially uniform and time-dependent. For standing waves, the 
centre of mass of the two-fluid system oscillates vertically with twice the frequency 
of the waves. Equating the net total external force per unit horizontal area to the 
acceleration of the centre of mass per unit horizontal area, we obtain the expression 

and thus 
d 2 q  
dt2 

B(t) = $(l -r)-,  (2.16) 

where the overbar denotes horizontal average over one wavelength. 
To determine the pressure in each of the two fluids, an additional boundary 

condition that specifies the pressure far from the interface in one of the two fluids 
is required. A common laboratory situation would have a stationary free surface far 
above the interface, with the associated boundary condition that the pressure in the 
upper fluid far from the interface must vanish. I n  the present work, we do not 
compute the absolute pressure, and therefore need not specify this additional 
boundary condition. 

One of the main difficulties with all water-wave problems is that  the nonlinear 
boundary conditions (2.5) and (2.10) are applied a t  the unknown position of the 
interface. For free-surface progressive waves, this difficulty is eliminated by making 
the space coordinates the dependent variables and the stream function and the 
velocity potential the independent variables ; the free surface is then known, since 
it must be a streamline. For free-surface standing waves, Schwartz & Whitney (1981) 
showed that this difficulty can be reduced by computing a time-dependent conformal 
mapping that maps the fluid region onto a time-independent region, and thus maps 
the free surface onto a known line. However, for interfacial waves, these methods 
are of no advantage. Holyer (1979) discusses this problem for interfacial progressive 
waves. For interfacial standing waves, no conformal mapping can map both upper 
and lower fluids to a fixed region such that adjacent points of the two fluids on 
opposite sides of the interface are mapped to adjacent points in the new region. We 



288 J .  W .  Rottman 

follow Holyer (1979), and expand the boundary conditions (2 .5)  and (2.10) in Taylor 
series about the undisturbed interface y = 0. Thus (2.5) and (2.10) become 

(2.17a) 

(2.1 7 b)  

-- a$l r+ a$ (l-?-)gy = B-+(V$l)2+;r(V$2)2 at at 

Our working equations are (2.3) with the boundary conditions (2.4), (2.7), (2.17) 
and (2.18). To make these equations non-dimensional, we choose k-l, where k = 2n/h 
is the wavenumber, as our reference length, and w-l, where w = 2n/T is the angular 
frequency, as our reference time. The dimensionless variables (denoted by a tilde) are 

D = kx, d = k y ,  t"= wt, (2.19a, b ,  c )  

and the resulting non-dimensional parameter is 

(2.20a, 6 ,  c )  

(2.21) 

The substitution of the non-dimensional variables into the governing equations and 
the subsequent dropping of the tildes leaves all the equations unchanged except that  
(1  --r)g in (2.18) is replaced by S.  This parameter is proportional to the square of 
the period of the waves; i t  is also simply the non-dimensional reduced acceleration 
due to gravity. 

3. Perturbation solution 
We seek a perturbation solution to the problem formulated in 32. Therefore, we 

expand the dependent variables in power series in terms of a perturbation parameter 
m €: 

(3.3) 

(3.4) 

e is defined to  be half the vertical distance from the crest to the trough a t  the time 
t = 0: 

(3.6) e = L H = 1  2 2 " A  0) - r(0, 7.41. 
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Substituting (3.1)-(3.5) into (2.3), (2.4), (2.7), (2.17), (2.18) and (3.6), and equating 
coefficients of cz (for 1 = 1,2 ,3 ,  . . .) t o  zero in each equation, we obtain the following: 

vz$p = 0, vz$p = 0, (3.7a, b )  

# ) + O  as y+-oo, $ f ) + O  as y + + m ,  (3.8a, b )  

(3.9 a,) 

(3 .9b )  

a$p) a $ p  
ax ax 

-=-- - 0  at x = O ,  

p ( 0 ,  O ) - ? p ) ( O ,  7r) = a1,$ 
where Jij is the Kronecker delta, and 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.17) 

(3.18) 

(3.19) 

where the sums are zero if the upper bound of the index is less than the lower bound. 
The functions f ' l ) .  g( l )  and h(l) are zero for 1 = 1 ,  and are nonlinear combinations 

of solutions to (3.7)-(3.12) of order less than I for I > 1.  Thus (3.7)-(3.12) are linear 
in terms of $ l ) ,  $iZ), $ L 2 ) ,  B(') ,  S(I-l), and may be solved successively for 1 = 1,2,  . . . . 
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For any order I, (3.7), with boundary conditions (3.8) and (3.1 l ) ,  have the part'icular 

(3.20) 

$ lp , v  = sin (put) COP (m) evy ,  (3.21) 

$2y,u = sin (put) cos ( vx) e+V,  (3.22) 

with p = 0 ,1 ,2 ,  . . . and Y = 1,2 ,3 ,  . . . . These solutions have the required periodicity 
in time and space. The complete solution is determined by choosing the linear 
combinations of each of (3.20)-(3.22) that  satisfy the boundary conditions (3.9) and 
(3.10), and (3.12). 

solutions Y / p , y  = cos (pt) cos (vz), 

For I = 1 ,  the general periodic solution to (3.7)-(3.12) is 

(3.23) 

W 

(3.25) 

with the constants am subject to the conditions 

I: a Z n - 1  = 1, 
n - 1  

00 

(3.28) 

a, =k 0. (3.29) 

The last condition is necessary for both the wavelength and the period to have the 
assumed value of 2n. 

Evidently there is an infinite family of first-order solutions. As pointed out by 
Penney & Price (1952), each of these solutions will generate a different series of 
higher-order solutions. We follow these authors and choose to investigate only the 
solution that is simply periodic for small amplitudes. That is, we set am = 0 form > 1 ; 
it  then follows from (3.28) that a,  = 1.t 

For 1 > 1.  we find that 

y = 1  v-1 
(3.30) 

(3.31) 

(3.32) 

where L(1) is an integer function of 1 (to be specified later), and 

m = 2p- 1 ,  n = 211- 1 (I odd), (3.33a, b )  

m = 2p-2, n = 2v-2 (1 even) (3.34a, b )  

t In appendix A we illustrate by a simple example a possible procedure for determining 
higher-order solutions corresponding to other choices of a, for m > 1. 
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The f:“, git? and hit? are constants, inaependent of t and x. The general periodic 
solution of (3.7)-(3.12) may be written in the form 

p-1 v-1 

(3.35) 

(3.36) 

(3.37) 

where m and n are defined by (3.33) or (3.34) and a;?”, b:?, c;:,, are independent of 
t and z. Substitution of (3.30)-(3.32) and (3.35)-(3.37) into (3.9), (3.10) gives 

I 

(3.38) 

(3.39) 

(3.40) 

for m = 0 , 1 , 2 ,  . . . ; n = I ,  2 ,3 ,  . . . ; n $: m2. For n = 0, which implies that  1 is even 
and v = 1, the boundary conditions (3.8) and the requirement that  the undisturbed 
interface be located along y = 0 give 

(3.41) ( 1 )  = b( l )  = c(1) = 0 (p = 1 ,2 ,3 ,  . . .). 
%l y,1 p.1 

- C hL:)lcos(mt) (1  even), 
Then (3.10) implies 

(3.42 a )  

l o  (1 odd). (3.42b) 

For m = n = 1 ,  which implies that 1 is odd and p = v = 1 ,  (3.38) is replaced by 

h f i  +f$f{ + rgif\ ( I  odd), ( 3 . 4 3 ~ )  

{ o  (1 even). (3.43b) 
S(1-1) = 

This leaves aft\, for 1 odd, undetermined; however, (3.12) may be used to give 

y= l  u-1 ‘ 
(3.44) 

(where a$:\ in the sum is set to zero) when all the other coefficients in the sum are 
known. The coefficients bi?, and cil;\, for 1 odd, are then determined by (3.39) and (3.40). 

The cases n = m2 ( n  =I= 0 , l )  are more complicated. Let ,a*, v* be the values of the 
indices corresponding to one of these cases, then (3.38) is replaced by 

m2h(l) p*,v* +mf(l) p*,v.f~w;2,v. = 0, (3.45) 

and af2,v* is undetermined. Indeed, the a$)”. are coefficients of the homogeneous 
solutions to (3.9) and (3.10), as indicated by (3.23). Assume that (3.45) is satisfied 
a t  order 1 for I > 2. If is given an arbitrary value, then some careful algebra 
shows that a t  order 1+2 (3.45) will be 

(3.46) uai?,u* + /3 = 0, 
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a = mz(m2- 1) ~ -m2#(2), (3.47) where 

and /3 is a constant that  is determined by computing the left-hand side of (3.45) a t  
order 1+2 with a$,,, = 0 (in general p =I= 0). Therefore an arbitrary choice of a!,'!.,,* 
will not satisfy (3.45). But it is always possible to satisfy (3.45) a t  order 1+2 by 

(3.48) P 
choosing 

a,*,,* = -- 
a' 

11 i r l  

unless, using the expression for #@) given by (4.4), 

r = 2(m2-1)-[4(m2-1)2-1]~, (3.49) 

in which case 01 = 0. The values of r that satisfy (3.49) corresponding to several values 
of m are given in table 1. Note that as m increases, r approaches the free-surface limit 
Y = 0. The air-water density ratio, r = low3, lies between m = 15 and m = 16. I n  the 
present work we will not investigate the standing waves corresponding to these 
particular values of r ,  except to note, where appropriate below, how the present 
method may possibly be modified to  handle these special cases. 

With U ~ J , ~ ~  given by (3.48), the coefficients btJ,,* and ci,,.. are determined by 
(3.39) and (3.40). It follows from this procedure that for a general value of 0 < r < 1, 
the integer function L(1) is given by 

(1 < 1 < 4),  (3 -50 a )  

[[$]+N ( 3 + N ' < 1 < 3 + ( ~ V + l ) ~ ,  N =  1 ,2  , . . .  ), (3.50 b )  

where the symbol [tZ] represents the integer part of 41. It is interesting that (3.50) 
violates Stokes' hypothesis; that is, the solution (3.35)-(3.37) does not have the 
property that the nth-degree Fourier component first appears a t  nth order. For this 
to be true, L(I) must be equal [ill+ 1 for all 1. From the results to be presented in 
fj4 i t  appears that  for the two special cases r = 0 , l  Stokes' hypothesis is correct; that  
is, all the coefficients in (3.35)-(3.37) with r = 0 , l  and indicesp, v > [;I] + 1 have been 
found to be zero, up to 1 = 21. We have not been able to prove that this is true for 
all 1. Schwartz & Whitney (1981) in their solution of the free-surface standing-wave 
problem assumed from the beginning that the structure of the perturbation solution 
followed Stokes' hypothesis. 

We have not derived explicit formulae for the fLf?, gf),, and h$ coefficients. Indeed, 
explicit formulae for these quantities would be much too complicated to express 
clearly because their calculation involves many multiplications of double Fourier 
series. Instead, we have devised an algorithm for computing the values of these 
coefficients. The algorithm is outlined in appendix B. 

The general procedure for I > 1 ,  with r not equal to one of the values given by (3.49), 
is as follows. Assuming that the complete solution is known €or all orders less than 
or equal to  1 - 1, compute fL", g::; and h$J, for p, v = 1,2, . . . L(I), by the method 
described in appendix B. Next compute a,$$, bL1i and c~~?,,, for p,  v = 1,2,  . . . L(1), from 
(3.38)-(3.41) if I is even, or from (3.38)-(3.40) and (3.44) if I is odd, setting a;?,,. = 0 
(where p*,  v* are such that n = m2, n =l 0 , l ) .  At the same time, compute B(z )  from 
(3.42) and S(z-l) from (3.43). This procedure is then repeated for I = I +  1 and I = E +  2. 
At order 1+2, compute aLQ,,* from (3.48) and recompute b$Q,,* and c$Q,,* from (3.39) 
and (3.40). Finally, if 1 is odd, recompute alfl from (3.44). This gives the complete 
solution for order I .  This entire process may be continued for I = I + 1, 1 + 2, . . . , etc. 
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m 
2 
3 
4 
5 

15 
16 

r 
0.083920 
0031 281 
0016671 
0.010 1 1  8 

oooi 116 
0.000 980 

TABLE 1. The values of the density ratio r that satisfy (3.49) for several different values of m 

The general procedure for 1 > 1, with r equal to one of the values given by (3.49), 
should be similar to  but more complicated than the procedure described above. The 
essential difference should be that instead of carrying the calculation forward two 
orders to  determine the particular ail),v, corresponding to the singular value of m, 
the calculation will have to be carried forward three or possibly four orders. Because 
the algebra is complicated, we have not attempted to prove that this procedure will 
indeed eliminate resonance a t  all orders. 

The algorithm described above was first programmed in CAMAL, an algebraic 
computing language developed a t  Cambridge University. The highest order that 
could be calculated using this method was determined by storage limitations. For 
a fifth-order calculation, which is the highest-order calculation we made using CAMAL, 
the execution time was approximately one minute and the store was 250 Kbytes on 
the Cambridge University IBM 370/165. The solution to fourth order is shown in $4. 
This solution matches Hunt’s (1961) fourth-order solution, except that  the coefficients 
Hunt found to be indeterminate we have determined by requiring secularity to be 
eliminated a t  sixth order. 

Although the CAMAL program is general in that it gives the solution in terms of 
the algebraic variable r, a solution to fifth order is not sufficient to compute the 
limiting-amplitude standing waves. To compute a higher-order solution we pro- 
grammed the calculation in FORTRAN IV and ran the calculation in double precision 
(29 decimal digits) on the CDC 7600 at the Lawrence-Berkeley Laboratories in 
Livermore, California. A 2lst-order calculation required approximately three minutes 
of execution time and 220 Kwords of store. We ran the FORTRAN program for five 
different values of the density ratio : r = 0, 0.1,05,1.  The first value corresponds 
to free-surface waves, the second value to air-water interfacial waves, the third and 
fourth values correspond to intermediate density ratios, and the last value corresponds 
to Boussinesq waves, in which the density difference is only important when 
associated with buoyancy. 

Several methods were used to check the accuracy of the FORTRAN program. To 
fifth order, the calculations were compared with the CAMAL results, and were found 
to agree to full machine accuracy for all values of the density ratio used. There are 
no higher-order interfacial standing-wave solutions available, but we did compare our 
r = 0 solution to Schwartz & Whitney’s (1981) 25th-order free-surface standing-wave 
solution. Up to  2lst-order, which is the highest order we computed, our coefficients 
for the expansion of S were found to agree with Schwartz & Whitney’s (to the number 
of figures they display). Because of the different formulations, i t  is difficult to  compare 
the other aspects of the two calculations. We also computed the terms in (2.16) and 
found that the equation was always balanced within machine accuracy. 
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4. Results 
We use rational fractions (Pad6 approximants) to  sum the t,wenty-first order series 

for the wave period, the wave energy and the wave profile. The [MINI Pad6 
approximant of a function f ( e )  that  has the series expansion 

f ( E )  = a0+a,e+a2e2+. . . + a n l + N € M + N + .  . . (4.1) 

(4.2) 
is defined as 

bo+b,e+ . . . +b,eM 
'IM'" = 1 +c,e+.  . . +CN€N ' 

where bi and ci are determined uniquely by equating coefficients of equal powers of 
e between (4.1) and the Taylor-series expansion of (4.2) about' e = 0. 

Rational fractions provide an approximate method of analytic continuation. The 
convergence of the simple series (4.1) is confined to values of IeI less than I€*[, where 
e* is the location in the complex plane of the singularity off that  is nearest, the origin. 
The sequence of Pad6 approximants (4.2), on the other hand, will usually only fail 
to converge near branch points or branch cuts off. Pad6 approximants are known 
to have poles near the singularities off. By our definition (3.6), only real values of 
e are physically meaningful. Thus the position of the pole that is on the real axis and 
nearest the origin gives an indication of the maximum value of c for which physically 
meaningful solutions exist. 

Pad6 approximants have been used with much success in water-wave theory by 
Schwartz (1974), Longuet-Higgins (1975), Cokelet (1977),  Holyer (1979), Schwartz 
& Whitney (1981), and others. Baker (1965), Graves-Morris (1973) and Cabannes 
(1976) may be consulted for the theory and applications of Pade approximants. 

4.1. The wave period 

The dimensional wave period !I' is related to  our non-dimensional parameter 8 by 

(4.3) 

To fourth order, the coefficients in the expansion of S for 0 < r ,< 1 are 

S(O) = 1 + r ,  (4.4a,) 

S(2) = -i( l- .)++q, (4.46) 

where q EE (1 +r ) - l .  (4.5) 

As mentioned before, all coefficients of the odd powers of e in the series for S are zero. 
To Slst  order, the coefficients in the expansion for S for the five values of the density 
ratio considered are shown in table 2.  

The locations of the poles of the [N/W and [ N / N + l ]  Pad6 approximants to S 
on the real axis and nearest the origin for each of the five cases considered are 
presented in table 3. Although we clearly have an insufficient number of terms to give 
a conclusive answer, the results are fairly consistent except for r = 0.1. The average 
of~the last three approximants gives emax = 0*68,0*68, 248,0.93, 1-03 for r = 0, 
0.1, 0.5, 1.0 respectively. 

The summed Pade approximants for X as a funttion of e are plotted in figure 2 .  
These curves were obtained by computing the average of the [3/4], [4/4], [4/5] and 
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1 
0 
2 
1 
6 
8 

10 
12 
14 
16 
18 
20 

r = O  

1 .o 
0250000 

- 0039 063 
-0015431 
-0010839 
- 0063 683 
- 0.1 34050 
- 0.238 688 
- 0.532 647 
- 1.242 121 
-2.724052 

r = 

1 -00 1 
0249 75 1 

-0038 759 
- 0015020 
- 0010 500 
- 0062 969 
- 0 132 736 
- 0.237 784 
- 0532 529 
- 1.243090 
- 2.733 988 

r = 0.1 

1-1 
0229546 

04  186 99 

0446949 

- 00117 7 1 

- 00592 73 

-3.257306 
23.559 6 1 

- 170.292 7 
123342 1 

- 8946.606 

r = 0.5 

1 -5 
0208 333 
0.025897 
0013429 
0002169 
0008036 
0006 63 1 
001 9 791 
0.09 1 857 
0.650268 
6493 484 

r = 1.0 

2.0 
O%OOOO 
0,012 969 
0,010 274 
0,009 469 

* 0.006 97 1 
0007 264 
0004842 
0.0 10 320 

-0075973 
- 0766 586 

TABLE 2. Coefficients of in the series expansion of S for several values of the density ratio r 

r = O  

1.224532 
0435611 
0629205 
0.744248 
0.688748 
0675 703 
0674083 

r = 

1.228 945 
0.431 892 
0627 329 
0.741 132 
0.687 293 
0674576 
0.673078 

r = 0.1 

3061 098 
1,583 332 
2.777643 
2.865091 
2777681 
1,803 355 

- 

r = 0.5 

1.902278 
1.025025 
0,881 641 
1.1 08 724 
0935272 
0.910924 
0935 7 18 

r = 1.0 

0632 469 
1.026655 
1.034779 
1.025469 
1 . O M  303 
1-020545 
1.043 85 1 

TABLE 3. Positions of the poles of the [ N / N ]  and “ I N +  11 approximants of S that are located 
on the real axis and nearest the origin 

[5/5] Pad6 approximants for a given value of e, discarding the approximant that was 
furthest from the mean, plotting the new average of the remaining three approximants 
as a solid line, and plotting the deviation from the mean as dashed lines on either 
side of the solid curve. The figure shows that X increases monotonically with 
increasing e for all five values of r, although there is a hint that X is maximum for 
some E: < F,,, when r = 0. 

4.2. The waue energy 

The total energy per unit horizontal area is, since the motion comes completely to 
rest a t  t = nn, n = 0,1, . . . , simply the potential energy per unit horizontal area 
evaluated at  t = 0. In  terms of dimensional quantities, the potential energy per unit 
horizontal area of the two-fluid system is 

If we let 

where the tilde denotes a non-dimensional variable, then in non-dimensional form, 
dropping the tildes, (4.6) is 

where the overbar denotes horizontal average over one wavelength. 
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FIGURE 2. The increase of 8, which is proportional to the square of the wave period, relative to 
the value of S for infinitesimal waves, as a function of the expansion parameter 6 .  The solid curves 
are the average of three Pad6 approximants and the dashed curves indicate the deviation from this 
average. Emax = 0.68, 2.41, 0.83, 1.09 for r = (a) 0, ( b )  0.1, ( c )  0 5 ,  (d )  1.0. 

To fourth order, the series expansion of E,  the total energy per unit horizontal area, 
m is 

E = E( l )d ,  (4.9) 
1-0 

where E(O) = 0, E(2) = a, E(4) = -1+%-3@? 8 4  4 9  (4.10a, b,  c) 

and all E(l) for odd 1 are zero. To 21st order, the coefficients in the expansion for E 
are shown in table 4. The locations of the limiting poles of the [N/NJ and [ N / N +  11 
approximants to E for each of the five density ratios considered are presented in table 
5.  The average of the last three approximants gives emax = 0*68,068,2.33,073, 1-15 
for r = 0, lov3, 0.1, 0.5, 1.0 respectively. 

The summed Pad6 approximants for E as a function of E are plotted in figure 3. 
These curves are computed by the method described in $4.1. The figure shows that 
E increases monotonically with increasing e for all five values of r ,  although there 
is a hint that E is maximum for some < Em,, when r = 0. 

4.3. The wave projile 
The fourth-order expansion for the interface profile is conveniently written in the form 

q(t, r )  = A,cosr  + A,cos 2r+ A,cos 3x+ A*cos4r, (4.11) 
where 

(4.12a) A ,  = 6 cost -& €3 [ (5 -  29q + 29g) cost + (1  - 3q+ 3q2) cos 3t], 

A ,  = -€“+-&a) (1+cos2t) 

+ e4[&(i- 21q +Y&P’ - 33q3) + (s-v Q +$ q2-  3q3) cos 2t 

+ &j (g- 9 Q + q2 - 4 1 ~ ~ )  cos 4t], (4.12b) 

( 4 . 1 2 ~ )  

(4.12d) 

(4.13) 

-4, = €“(&-Q + q 2 )  (8 cost + cos 3t)], 

A ,  = - e4[(i - %  Q + 3q2 - 2q3) (1  + cos 4t) - b cos 2t] 

b = [14(1-q)-(1 + r ) ] - l  ( ~ - & r - ~ q + ~ ~ ~ - ~ q ~ + ~ q * )  
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I r = O  

2 0250000 

6 0090 503 
4 -0125000 

8 - 0025 652 
10 -0126 169 
12 - 0064 908 
14 -0174 268 
16 - 0546 307 
18 - 1.127015 
20 - 2.346 874 

r = lop3 

0250000 

0090 123 
- 0124252 

- 0.025 5 I8  
- 0.1 24 5 I4  
- 0064235 
- 0175055 
- 0545 659 
-1.127782 
-2‘361 131 

r = 0.10 

0.250000 

007 1 168 

0509042 

-0063017 

- 0087 564 

- 3’743508 
27.1 75 59 

- 1964122 
1421.833 

- 10307.94 

r = 0 5  

0250000 
0041 667 
001 6 925 

0007 742 
0004748 
0021 102 
0106552 
0776879 
7.806 96 1 

- 0.001 786 

r = 1.0 

0250000 
0062 500 
0008049 
0004 940 
0,003 165 
0003 169 
0.000 367 
0.004 496 

- 0082 328 
-0789 108 

TABLE 4. Coefficients of ez in the series expansion of E for several values of the density ratio r 

[MINI r = O  r = r = 0 1  r = 0.5 r = 1.0 
- - - 1.885219 1.249028 
- - 1.597 955 0629427 1 .OOO 640 

0736978 0734699 - 0650 101 1-173273 
0682 305 0680800 2.637 897 0630756 1.175324 
0.670844 0669 960 - 0863524 1.173271 

[4/51 0674487 0673438 2.020076 0683 986 1.088 3 18 

TABLE 5. Position of the poles of the “ I N ]  and [ N / N +  11 approximants of E that are located 
on the real axis and nearest the origin 

[2/21 

PI31 
[3/41 

~ 3 1  

[4/41 

FIQURE 3. The wave energy E plotted against the expansion parameter e. The solid curves are the 
average of three Pad6 approximants and the dashed curves indicate the deviation from this average. 
Emax = 068, 2.41, 0.83, 1.09 for r = (a) 0, (b) 0.1, ( c )  0.5, ( d )  1.0. 

for r =l= 6- 4 3 5 .  (4.14) 

If the differences in the definition of the expansion parameter and the phase of the 
generating solution are taken into account, the above solution agrees with the 
solution given by Hunt (1961, equation (19)). However, Hunt found the coefficient 
b to be indeterminate, whereas we have found that the value shown above for this 
coefficient is necessary to  eliminate secularity a t  sixth order. 
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The results of the 2lst-order calculation for the three cases r = 0,O.l. 1.0 are shown 
in figures 4 (u-c) and figures 5 (a-c). The plots in figure 4 were obtained by using the 
method described in 34.1 to sum the series for ~ ( t ,  x) a t  100 values of r equally spaced 
between 0 and 7~ for t = 0, and connecting all the computed points with straight lines. 
Different wave amplitudes for each density ratio are shown in figures 4(u-c). The 
highest wave in each plot is the largest-amplitude wave for which Pad6 approximants 
produce visibly smooth curves. All the other waves plotted in these figures are 
computed from Pad6 approximants that have converged to within one percent or 
better. 

The plots in figure 5 show the interface for one wave height at 9 equally spaced 
times between 0 and n (a half-cycle). The interface, shown as a solid curve, was 
computed as in figure 4. The positions of the lower fluid particles, represented by solid 
circles, and oft$ upper fluid particles, represented by solid squares, were computed 
by numerically integrating the equations 

(4.15a, b )  

where ( X ( t ) ,  Y ( t ) )  is the particle position a t  time t .  I n  the numerical integration the 
right-hand sides of (4.15a, b) were computed from the 2lst-order series for q5 by the 
method described in $4.1. The particle trajectories are shown as dotted lines in the 
figures. 

There are several conclusions to be drawn from these two sets of graphs. Both sets 
of curves show that as the density ratio approaches unity, the interface profile 
becomes more sinusoidal than the free-surface profile. That is, the presence of an upper 
fluid tends to reduce the magnitude of the coefficients of the higher harmonics in the 
solution for the interface profile. I n  fact, i t  is not difficult to show that Boussinesq 
( r  = 1) standing waves have the additional symmetry ~ ( r )  = - r ( ~ + n )  as well as the 
assumed symmetry ~ ( x )  = --r( -r). From a physical point of view, the closer the 
density ratio is to unity, the lesser the effect of gravity is, and thus the difference 
between crests and troughs is less, until a t  r = 1 crests and troughs are identical in 
shape. I n  other words, with no preferred direction in the vertical, the wave should 
look the same viewed from below as from above. 

The profiles illustrated in figures 4(a-c) show that as the amplitude of the waves 
nears its maximum, the slope a t  some point along the profile appears to approach 
the vertical, except for the free-surface standing waves. For free-surface waves, the 
slope a t  the crest appears to be approaching 4 5 O ,  although we do not have sufficient 
accuracy with only 21 terms in our expansion to say this for certain. As r increases 
from 0 to 1 the point on the interface with vertical slope moves from very near the 
crest to the midpoint between the crest and the trough. This is exactly the same 
behaviour exhibited by near-maximum amplitude interfacial progressive waves, as 
described by Holyer (1979). However, for standing waves we do not have sufficient 
accuracy to  determine the exact position along the interface where the profile 
becomes vertical for each density-ratio case, as Holyer (1979) was able to do for 
progressive waves using a 31 -term expansion. 

Figure 5 f a )  shows, as pointed out by Penney & Price (1952) and Schwartz & 
Whitney (1981), that free-surface waves are never flat. They are most nearly flat at 

FIGURE 4. Interface profiles at t = 0 for several amplitudes of oscillation: (a )  free-surface waves, 
p2/pl = 0 at E = 01,  03, 04, 05, 05 ,  0 6 ;  ( b )  interfacial waves, p2/p1 = 0.1 at E = 0.2, 0.4, 0.6, 08,  
09;  (c) Boussinesq waves, p2/p l  = 1.0 at E = 02, 04 ,  0.6, 0.75. 
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t = 4. k nm, n = 1,2, . . . . Figure 5 (c)  illustrates that, contrary to free-surface standing 
waves, interfacial waves are flat a t  t = +nknm. This can be inferred from the 
symmetry relation ~ ( t ,  x) = -v(t ,  x+m), which requires that v( t ,  x) has a Fourier 
expansion in terms of cosine functions with arguments that are odd integer multiples 
o f t  and x. 

4.4. Discussion of the highest wave 
We have used the locations of the poles of the Pad6 approximants to the wave period 
and the wave energy to estimate the maximum height that standing waves can 
achieve before they become non-periodic. Averaging the estimates obtained from the 
two series we get: Emax = 0.68, 0.68, 2.41, 0.83, 1.09 for r = 0, 0.1, 0.5, 1.0 
respectively. Comparing the results from the two series, we find good agreement for 
r = 0, lop3, but discrepancies as high as 20 yo for r = 0-1,0*5, 1.0. Thus, our estimates 
for the maximum wave height for r > 0 must be considered uncertain. However, the. 
trends are consistent ; interfacial waves tend to have a larger maximum amplitude 
than free-surface waves, and waves with r x 0.1 tend to have a much larger maximum 
amplitude than either free-surface or Boussinesq waves. 

By analogy with progressive waves, we would expect the maximum amplitude to 
increase monotonically with increasing r .  Our results for r = 0.1 are inconsistent with 
this expectation. Since we have been unable to determine a physical reason for the 
predicted large maximum amplitude for this case, we feel that the nearness of r = 0.1 
to 008392. . . , the largest value of r for which the solution procedure fails, affects 
the accuracy of our results. Therefore, our results for this case must be considered 
very uncertain. 

The apparent maximum in S and E for E < em,, when r = 0 can be explained just 
as for progressive waves. At t = 0 the highest wave is sharp-crested, and its profile 
intersects that of slightly smaller amplitude waves near the crest, which means that 
the highest wave is actually lower over most of the profile. 

As a check on our procedure for estimating the maximum wave height, we 
computed Pad6 approximants to the vertical pressure gradient at the crest of 
free-surface standing waves at t = 0. In  non-dimensional form, the vertical pressure 
gradient is given by 

- aP = -(,+S) a2v 
aY 

(4.16) 

The results for the [8/8], [9/9] and [10/10] approximants are plotted in figure 6. 
According to Penney & Price (1952), the free-surface standing wave of maximum 
height has a downward acceleration at  the crest equal to that due to gravity, which 
implies that the right-hand side of (4.16) is zero. In  figure 6, the Pad6 approximants 
for the right-hand side of (4.16) are seen to cross zero a t  E,,, x 0.647, which gives 
(H)A)max x 0206. This is very close to our previous estimate of emax x 0.68. 

As another check on our calculation of free-surface standing waves of maximum 
height, we computed y ,  the initial inclination of surface particle trajectories to the 
downward vertical. The results near the crest for E = 0.3, 0.4 and 0.5 are shown in 
figure 7. Longuet-Higgins (1973), with the assumption that the crest of the highest 

FIGURE 5. Interface profiles (solid curves) and particle trajectories (dashed curves) at t = 0, in, $7, 

. . . , n; 0,  lower fluid particles ; m, upper fluid particles. (a) Free-surface waves, pJp, = 0 at E = 0 6  ; 
( b )  interfacial waves, p2/p1 = 0 1  at E = 0 7 ;  ( c )  Boussinesq waves, p2/p1 = 1.0 at E = 0.75. 
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FIGURE 7 .  The initial inclination y of free-surface particle trajectories t o  the downward vertical 
as a function of the initial, horizontal particle position Y ( t  = 0): ---, E = 0 3 ;  ---, t: = 0 4 ;  

, B = 0.5; -, (4.17). ______  

standing wave encloses an angle of 9O0, derived an approximate expression for the 
velocity field of the highest wave, which near the crest gives 

5.38X(t = 0) 
h Y" (4.17) 

Figure 7 indicates that  our computed results approach (4.17) as E increases to  about 
6 = 0.5. For t: > 0.5, our computed results oscillate about (4.17), which we believe 
indicates truncation error. 

Our computed interface profiles indicate that the standing wave of maximum 
height has a vertical slope a t  some point on the interface, implying that standing 
waves break by overturning. But the experiments by Thorpe (1968) show that 
Boussinesq standing waves become unstable and begin to break at amplitude less than 
half the amplitude a t  which we predict overturning. We conclude that interfacial 
wave breaking occurs owing to shear instability, as Thorpe suggested, and not to 
overturning. 

5. Concluding remarks 
We have formulated an algorithm for computing a series solution for the shape of 

the interface profile, the velocity potentials, and the period of interfacial standing 
waves as a function of wave amplitude. The algorithm has been coded for automatic 
computation using two different programming languages. Using CAMAL, a symbolic 
algebra language, a solution has been obtained to fifth order in terms of the algebraic 
variable r, the ratio of the density of the upper fluid to  that of the lower fluid. Using 
FORTRAN, solutions have been obtained to 21st order for the five specific values 
of r = 0, 10-3, 0.1, 0.5, 1.0. 
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Several features of the interfacial standing-wave problem complicate the solution 
algorithm. The major computational difficulty is that the boundary condition at the 
interface must be expanded in a Taylor series about the undisturbed interface. Unlike 
free-surface boundary conditions, which have constant pressure at the surface and 
therefore can be simplified by mapping the surface to a known, fixed region, 
interfacial boundary conditions cannot be so simplified. A feature that free-surface 
and interfacial waves have in common is that the solution to the first-order equations 
is not unique. For simplicity, we have followed previous workers in arbitrarily 
choosing the first-order solution that is simply periodic in space and time. However, 
the existence of these other first-order solutions leads to secularity a t  higher order. 
For this secularity to be eliminated, which is essential for the existence of periodic 
standing waves, we must add to the particular solutions appropriate homogeneous 
solutions with coefficients computed such that the secularities a t  higher order are 
eliminated. We have shown that this is always possible, except for a denumerably 
infinite set of values of r clustered near r = 0. (A procedure somewhat different from 
ours would have to be used a t  these particular values of r . )  As a result of this 
procedure, we find that in general the structure of the solution does not conform with 
Stokes’ hypothesis. That is, for a general value of r the solution does not have the 
property that the nth-degree Fourier component first appears a t  nth order. For two 
specific values of r ,  corresponding to free-surface waves and Boussinesq waves, the 
solutions do seem to have a Stokes-type expansion. 

The results of the calculations show the effects of the presence of an upper fluid. 
In general, interfacial waves tend to have flatter crests and troughs, and longer 
periods than free-surface waves with the same amplitudes. The property of free-surface 
standing waves that the surface is never flat (and thus free-surface standing waves 
have no true nodes) is diminished by the presence of an upper fluid; in the limit as 
the density of the upper fluid approaches that of the lower fluid, the interface is flat 
every quarter period and has a node at the midpoint between the crest and the trough. 

Based on the computed solutions, we have made some conjectures of the limiting 
form and some estimates of the maximum amplitude of interfacial standing waves. 
The computed profiles indicate that the waves are limited by the interface becoming 
vertical at some point. The point where this occurs moves from very close to the crest 
for small values of the density ratio to the midpoint between the crest and the trough 
for Boussinesq waves. Thus we conjecture that the criterion that limits the wave 
height for interfacial standing waves is the same as Holyer (1979) found for interfacial 
progressive waves. We have estimated the limiting wave height by studying the 
convergence properties of the series representations of the period and the energy of 
standing waves. Our estimated maximum wave-height-to-wavelength ratios are 
(H/A)max = 0.21, 0-21, 0.76, 026, 0-35 for r = 00,  01 ,  05 ,  1.0 respectively. 
These are crude estimates, since we cannot compute a sufficient number of terms to 
produce consistent results using different estimation techniques. The estimate for the 
case with r = 0.1 is particularly suspect, since r is near 0083 92. . . , where our solution 
procedure is invalid. Comparisons with the experiments of Thorpe (1968) indicate that 
Boussinesq standing waves break a t  much lower amplitudes than our estimated 
maximum amplitudes, and therefore breaking is probably due to shear instability 
rather than overturning. 

The author is grateful to H. E. Huppert and A. J. Roberts for several helpful 
discussions. Financial support was provided by the National Environment Research 
Council. 
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Appendix A. Alternative solutions 
The general solution t o  the first-order equations is given by (3.23)-(3.27), subject 

to the constraints (3.28) and (3.29). In the preceeding, we assumed that a, = 0 for 
m =l 1 ,  and showed that this assumption indeed generated solutions to the equations. 
We will now demonstrate by a simple example that other choices for the values of 
the a ,  also may generate solutions; however, the a, are not arbitrary, because only 
particular choices for the values of the a,  will prevent resonance from occurring at 
higher order. 

Consider the following solution to the first-order equations for free-surface standing 
waves (i.e. the solution corresponding to  a,  = 0, m > 2):  

71,l + a2 72.49 
p )  = (A 1)  

$(I) = , ,-a a $2.4. (A 2) 

B(1) = 0, (A 3) 

S(0) = 1,  (A 4) 
in which a, is arbitrary. Substitution of these formulae into (3.7)-(3.12) shows that 
to second order no resonance is generated, and therefore a2 is left undetermined, 

But a t  third order, (3.43) requires 

(A 5 )  S(2) = t ,  

and (3.45) for m = 2 requires (A 6) 

which has the solutions a2 = 0, +Q. (A 71 

l6a: - i@)a2 = 0, 

The solution corresponding to a2 = 0 is the one we have developed in the preceding 
sections. The other values of a2 are new so1utions.t We have computed the solution 
for this case to second order, successfully eliminating resonance a t  fourth order. 
However, we have been unable, mainly because of the complicated algebra, to prove 
that resonance can be eliminated a t  all orders, although conceivably this is possible. 

These results only apply t o  the case r = 0. We can prove that no solution exists 
if a, + 0, a,  = 0, rn > 2, when r =+ 0. 

Appendix B. The algorithm for computing fjf?, g::?, 

The functions f ( I ) ,  g ( l )  and hcZ) are defined by (3.13)-( 3.15). Their expansions in terms 
of double Fourier series are given by (3.30)-(3.32). If the solution is known to order 
1 - 1 ,  then the coefficients $?, g,($ and h:?” may be obtained by equating coefficients 
of trigonometric terms in (3.13)-(3.15). 

The computation of the right-hand sides of (3.13)-(3.15) involves the addition and 
multiplication of double Fourier series. The addition is straightforward. The 
multiplication is accomplished using an algorithm we will now outline (avoiding some 
details). Consider two Fourier series each consisting of sums over m and n of terms 
like 

The product of two terms like (B 1 )  produces four trigonometric terms, consisting 
of all the possible combinations of the sums and differences of the two ms and the 
two ns,  with the same coefficient. The series that represents the product is computed 
by adding together the coefficients of the trigonometric terms of equal argument that 
result from the products of the elements of the two series. 

t This contradicts a statement made by Schwartz & Whitney (1981, p. 168). 
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